Improving Medicare Advantage (MA) risk adjustment by limiting the influence of outlier predictions

Andy Johnson and Dan Zabinski
March 4, 2022
Presentation overview

- October 2021: Presented modification to MA risk adjustment that improves payment accuracy by limiting influence of large prediction errors
- Today: Revisit model improvements from October 2021 with addition of sensitivity analysis
- This analysis will be in the June 2022 report
Medicare payments to MA plans are risk adjusted

- Medicare pays MA plans a capitated rate for each enrollee
 - Base payment amount × beneficiary-specific risk score
- CMS uses risk scores from CMS–HCC model to adjust payments
 - Increase payments for beneficiaries expected to be more costly
 - Decrease payments for beneficiaries expected to be less costly
- Risk scores are based on
 - Demographic characteristics
 - Prior year diagnoses grouped into hierarchical condition categories (HCCs)
Model estimation determines size of coefficients (representing associated costs)

- Each demographic and HCC variable has a coefficient in the CMS–HCC model that represents the expected cost of the variable
 - Beneficiary risk score: Sum of relevant coefficients
- Coefficient values: Determined from regression that distributes beneficiary costs to the relevant coefficients
 - CMS uses FFS data to estimate coefficients, which reflect average cost associated with the variable
- Risk scores are an index: Sum coefficient costs, then divide by average FFS spending; average risk score is 1.0
Risk adjustment accuracy

- **Purpose of risk adjustment:** Predict costs accurately on average for a group with similar attributes
 - CMS chooses demographic variables and HCCs based on ability to predict costs
 - Large share of costs are not predictable by commonly observed information; much of cost variation cannot be explained

- **Benefits of the modification we are presenting:**
 - Improves accuracy of payment to plans,
 - Increases payment equity among plans, and
 - Counters incentives for plans to attract/retain beneficiaries that contribute to profits and avoid beneficiaries that contribute to losses
CMS has made several improvements to CMS–HCC model since 2007

- Revised mapping of diagnosis codes to HCCs
- Added and deleted HCCs
- Added variables indicating the number of HCCs for each beneficiary
- Stratified populations defined by institutional status, eligibility status (aged or disabled), and Medicaid status (full benefits, partial benefits, or no benefits)
 - CMS created distinct versions of the CMS–HCC model for seven populations defined by these characteristics
Modification to CMS–HCC model: Limit the influence of outliers

- Reinsurance and repayments: Redistribute plan payments from enrollees that are overpaid to enrollees that are underpaid
- Explicit reinsurance and repayments are not possible in MA due to insufficient cost data
- We evaluate a potential improvement to the model that limits the influence of outliers when estimating model coefficients
 - Method developed by McGuire, Schillo, and van Kleef \(^1\)
 - Simulates reinsurance and repayments in model estimation
 - We evaluate model accuracy overall (using R^2 and Cummings prediction measures) and for certain groups of beneficiaries (predictive ratios)

Benefits of this approach

- Improves the performance of CMS–HCC model
 - Increases accuracy of MA payments by limiting influence of outliers on HCC coefficients
- No additional burden on plans
 - No need to collect additional data
 - Continue to use a risk adjustment method that is straightforward and easy to understand (no black box)
 - No actual reinsurance or repayments
Steps to limit outlier predictions

1. Estimate model coefficients using current CMS–HCC model
2. Predict costs for each beneficiary using coefficients from (1) and calculate \(\text{prediction error} = \text{predicted cost} - \text{actual cost}\)
3. Apply loss limit to individuals with largest underpredicted cost
 - Reduce actual cost data to satisfy loss limit (simulating reinsurance)
4. Apply gain limit to individuals with largest overpredicted cost
 - Increase actual cost data to satisfy gain limit (simulating repayments)
5. Use the new data set with redistributed FFS costs to re-estimate CMS–HCC model coefficients to be used for payment
Identifying loss limit and gain limit

- Estimated standard CMS–HCC model using sample of 10.2 million FFS beneficiaries
- Used estimated model to calculate predicted costs and prediction errors (underpredictions and overpredictions)
- Used prediction errors to determine loss and gain limits; set these limits so that:
 - Decrease in actual costs by simulated reinsurance is 2% of total costs
 - Increase in actual costs by simulated repayment is 2% of total costs
 - Under 2% simulation: Loss limit = $106,500; Gain limit = $25,300
Limiting effects of outliers on model performance

- Used the loss and gain limits to adjust actual costs for outliers
 - Trimmed costs for underpredictions above loss limit
 - Augmented costs for overpredictions above gain limit
 - Decrease in actual costs offset increase in actual costs, so the modification to the model was revenue neutral
- Used redistributed costs to re-estimate model (modified model)
Limiting outliers improves how well predicted costs fit actual costs

<table>
<thead>
<tr>
<th>Model</th>
<th>Model R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard CMS–HCC</td>
<td>0.13</td>
</tr>
<tr>
<td>Modified CMS–HCC, 2% simulation</td>
<td>0.19</td>
</tr>
</tbody>
</table>

- R^2: Indicates how well beneficiaries’ costs predicted by the model match their actual costs; between 0 and 1, closer to 1.0 is better
- Modified model explains 43 percent more of the variation in costs
- Improved predictive accuracy: Less incentive for plans to use costs to identify favorable risks
- In contrast: CMS has made several changes to CMS–HCC model since 2007; R^2 improved from 0.11 to 0.13
Limiting outliers improves predictions for beneficiaries with largest prediction errors

<table>
<thead>
<tr>
<th>Prediction error</th>
<th>PR from standard model</th>
<th>PR from modified model (2% simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% largest underprediction</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>1% largest overprediction</td>
<td>6.4</td>
<td>2.0</td>
</tr>
<tr>
<td>All beneficiaries</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- **Predictive ratio (PR):** Aggregate predicted costs for a group divided by aggregate actual costs for a group; PR closer to 1.0 is better
- **By predicting costs more accurately for the largest underpredictions and overpredictions, plans are less likely to experience substantial financial gains or losses**

Data preliminary and subject to change
Sensitivity analysis

Predictive power improves as percent of costs redistributed increases; however, greater cost redistribution increases possibility that HCC coefficients do not reflect actual cost of care.

<table>
<thead>
<tr>
<th>Aggregate costs redistributed</th>
<th>R^2 from model</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (standard model)</td>
<td>0.13</td>
</tr>
<tr>
<td>1 percent</td>
<td>0.16</td>
</tr>
<tr>
<td>2 percent</td>
<td>0.19</td>
</tr>
<tr>
<td>3 percent</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Data preliminary and subject to change
Conclusions

- Limiting the influence of outliers would improve how well predicted costs match actual costs; less incentive to use costs to identify favorable risks.
- Extent of substantial underpredictions and overpredictions would be reduced; plans less at risk for substantial losses.
- We face many issues regarding MA risk adjustment, such as coding of conditions:
 - We have made recommendations regarding these issues.
 - The approach we have discussed would not impede or negate more comprehensive approaches.
Discussion

- Next steps:
 - Commissioner questions about method and content
 - Address Commissioner feedback and complete this analysis for publication in June 2022