Measuring the effects of medication adherence in the Medicare population

Shinobu Suzuki and Joan Sokolovsky
April 4, 2014
Research context

- Interest in policy interventions to improve medication adherence
 - Many studies find that adhering to evidence-based medication therapy reduces the use of other medical services
 - CBO plans to include medical spending offsets for future policies that increase the use of drugs covered under Part D while they continue to review new evidence

- Effects of improved adherence on Medicare still uncertain
 - Methodological issues in measuring effects of better medication adherence
 - Long-term health and cost implications
 - Concerns about polypharmacy and adverse drug events in population with multiple chronic conditions
Overview of the presentation

- Summary of our previous analysis
- Methodological considerations in our current analysis
 - Selection of the study cohort
 - Assignment of adherence levels
 - Analytical approach
- Results
- Summary of key findings
- Conclusions
Preliminary findings from our previous analysis

- Effects of better adherence differ by medical condition, characteristics of the patient population, and drug regimen
- Estimated spending effects may be confounded by other factors
 - Observed spending effects often unrelated to condition being treated
 - Greater improvement in adherence does not necessarily result in larger reductions in spending
- Adherence to medications decay over time
Selection of the study cohort

- Identify study cohort based on Medicare claims
 - Part A/B claims and Part D drug claims
 - Pros: Include only individuals prescribed study medication(s)
 - Cons: Exclude individuals with no study medication(s)
 - Part A/B claims only
 - Pros: Include individuals with and without claims for study medication(s)
 - Cons: Diagnosis on the claim may represent screening/diagnostic events
- Both methods capture individuals at varying stages of a progressive disease
Selection of CHF cohort for this study

- Beneficiaries with Congestive Heart Failure (CHF)
- Newly diagnosed with CHF (no prior CHF diagnosis)
 - Likely to capture individuals at similar stage of the disease
 - Likely candidates for starting on CHF medication therapy
- Additional restrictions for the initial cohort
 - Not on CHF medications before the CHF event
 - Received CHF diagnosis in an inpatient setting
Assignment of adherence levels

- “Adherence” defined as possessing any of the study medications based on Part D prescription drug event data

- High adherence
 - Start on CHF medication(s) within 3 months of a CHF event
 - Continue on CHF medication(s) for at least 6 months

- Low adherence
 - Start on CHF medication(s) within 3 months of a CHF event
 - Discontinue all CHF medication(s) in less than 6 months

- Non-adherent
 - Do not start on CHF medications or start on CHF medication(s) after more than 3 months have passed since the CHF event
 - Nearly 90% did not start on CHF medication

Note: ACE (angiotensin converting enzyme), ARBs (angiotensin receptor blockers), CHF (congestive heart failure).
Analytical approach

- OLS regression model used to estimate effects of adherence on Parts A and B spending
 - Spending effects for 2 outcome periods:
 - Months 1 – 6 after the CHF event
 - Months 7 – 12 after the CHF event
 - Spending effects for high/low adherence groups are relative to the non-adherent group

- Initial CHF cohort
 - CHF event in inpatient setting
 - No prior CHF medication use

- 6 model specifications
- Subgroup analysis
- Vary cohort selection criteria
Non-adherent vs. adherent beneficiaries

- Compared with beneficiaries in the adherent groups, beneficiaries in the non-adherent group tended to be:
 - Older (more beneficiaries over 80 years old)
 - Sicker (higher illness burden)
 - Have higher health care use / spending
 - Higher short-term mortality and higher long-term mortality, though, to a lesser extent
Regression results

<table>
<thead>
<tr>
<th>Model specification</th>
<th>High adherence</th>
<th>Low adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 - 6</td>
<td>7 - 12</td>
</tr>
<tr>
<td></td>
<td>1 - 6</td>
<td>7 - 12</td>
</tr>
<tr>
<td>1: adherence indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-$5,142 **</td>
<td>-$839 **</td>
</tr>
<tr>
<td></td>
<td>-$4,178 **</td>
<td>$326 **</td>
</tr>
<tr>
<td>2: model 1 + socio-demographic characteristics (excluding race)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5,058 **</td>
<td>-804 **</td>
</tr>
<tr>
<td></td>
<td>-4,313 **</td>
<td>244</td>
</tr>
<tr>
<td>3: model 1 + socio-demographic characteristics (including race)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5,062 **</td>
<td>-803 **</td>
</tr>
<tr>
<td></td>
<td>-4,337 **</td>
<td>219</td>
</tr>
<tr>
<td>4: model 2 + comorbidities + drug use pattern at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4,869 **</td>
<td>-485 **</td>
</tr>
<tr>
<td></td>
<td>-4,185 **</td>
<td>459 **</td>
</tr>
<tr>
<td>5: model 4 + medical spending at baseline</td>
<td>-$4,783 **</td>
<td>-$387 **</td>
</tr>
<tr>
<td></td>
<td>-$4,128 **</td>
<td>500 **</td>
</tr>
<tr>
<td>6: model 5 + survival status indicators</td>
<td>-$2,620 **</td>
<td>-124</td>
</tr>
<tr>
<td></td>
<td>-$2,270 **</td>
<td>391 **</td>
</tr>
</tbody>
</table>

Note: CHF (congestive heart failure). Months 1 – 6 refers to the first six months after the qualifying CHF event, and months 7 – 12 refers to the second six months after the qualifying CHF event. **Denotes statistical significance at the 5 percent level.

Source: Acumen, LLC, analysis for MedPAC
Regression results by subgroups

- Two subgroup analyses using specification 6
 - By age (≤ 80 years of age vs. > 80 years of age)
 - By low-income subsidy status (LIS vs. non-LIS)
- Findings show effects vary by subgroups:
 - Larger spending effects during months 1-6 for > 80 and LIS beneficiaries
 - Spending effects during months 7-12 small and not statistically significant in most cases
 - > 80 beneficiaries and LIS beneficiaries with low adherence had higher spending compared to the non-adherent groups
Summary of key findings

- Better adherence to CHF medications associated with lower medical spending
 - But study findings not generalizable to other conditions
 - Effects vary by beneficiary characteristics (e.g., LIS)

- Estimated spending effects sensitive to methodology used, such as
 - Model specifications
 - Criteria used to select the study cohort

- Adjusting for survival status reduced estimated spending effects by nearly half

- Estimated spending effects diminish over time
Conclusions

- We need a better understanding of:
 - How effects of medication adherence vary by condition, model used, population analyzed, and how study cohorts are selected
 - How health status affects adherence and vice versa
 - Why adherence decays within a relatively short period of time
 - Why estimated spending effects of medication adherence decay over time